May 23rd, 2025
Novel semi-parametric framework
Identifying link formation with externalities in socio-economic networks
Recursive estimation integrating kernel density and method of moments elements.
Making friends is easy!
Making friends is easy!
Making friends was easy!
Making friends was easy!

\(G_{ij}\)\(\; = {\Large 𝟙}\bigg\{\) \(\mathrm{H}_{i}\)\(\;+\;\)\(\mathrm{H}_{j}\) \(\ge\;\)\(U_{ij}\)\(\;\bigg\}\)
\(G_{ij} = {\Large 𝟙}\bigg\{\) \(h\)\((\)\(X_{i}\)\(,\,\)\(X_{j}\)\()\;+\;\) \(\mathrm{H}_{i} + \mathrm{H}_{j}\) \(\ge U_{ij}\bigg\}\)
\(G_{ij} = {\Large 𝟙}\bigg\{\) \(h\)\((X_{i}, X_{j}) +\;\) \(\mathrm{H}_{i} + \mathrm{H}_{j}\) \(\ge U_{ij}\bigg\}\)
\(h\colon {\mathcal{X}}^{2} \to \mathbb{R}\) examples:
\(G_{ij} = {\Large 𝟙}\bigg\{\) \(h(X_{i}, X_{j}) +\;\) \(\mathrm{H}_{i} + \mathrm{H}_{j}\) \(+ \beta \displaystyle\sum_{k\in\gamma_{n}(i, j)} \mathrm{H}_{k}\) \(\ge U_{ij}\bigg\}\)
\(G_{ij} = {\Large 𝟙}\bigg\{\) \(h(X_{i}, X_{j}) +\;\) \(\mathrm{H}_{i} + \mathrm{H}_{j}\) \(+ \beta \displaystyle\sum_{k\in{\color{red}\gamma_{\color{red}n}}(i, j)} \mathrm{H}_{k}\) \(\ge U_{ij}\bigg\}\)
Theorem 1 Under assumptions (A1)-(A6) and a know hyper-diagonal value \(h_{d}\) the fixed effects, the error distribution, the externality parameter, and the homophily function are asymptotically uniquely identifiable up to an interquantile normalization.
\[\begin{align} F_u(v) &= \mathbb{P}\left(G_{ij}=1|\boldsymbol{\eta},\beta\right) \\ &= \frac{\mathbb{P}\left(G_{ij}=1 \right) f_{v|G_{ij=1}}(v)}{\mathbb{P}\left(G_{ij}=1 \right) f_{v|G_{ij=1}}(v) + \mathbb{P}\left(G_{ij}=0 \right) f_{v|G_{ij=0}}(v)} \\ &\overset{def}{=} \frac{p_{1}(v)}{p_{1}(v) + p_{0}(v)} \end{align}\]
\(F_u\) and \(\boldsymbol{\eta}\) can be estimated simultaneously (KS or DBMM estimators)
Pick normalized candidate \(\boldsymbol{\eta}\), and bandwidth \(b_{0}\)
\(p_{1} (v_{ij};\, \boldsymbol{\eta})= \frac{1}{b^0(|\mathcal{M}|-1)} \displaystyle{\sum_{km \in\{\mathcal{M} - \{ij\}\}}} {\Large 𝟙}_{\{g_{km}=1\}} K \left(\frac{v_{ij}-v_{km}}{b^0} \right)\)
\(p_{0} (v_{ij};\, \boldsymbol{\eta})= \frac{1}{b^0(|\mathcal{M}|-1)} \displaystyle{\sum_{km \in\{\mathcal{M} - \{ij\}\}}} {\Large 𝟙}_{\{g_{km}=0\}} K \left(\frac{v_{ij}-v_{km}}{b^0} \right)\)
\(\hat p_{1} (v;\, \boldsymbol{\hat\eta^{0}})= \frac{1}{b^0|\mathcal{M}|} \displaystyle{\sum_{km \in \mathcal{M}}} {\Large 𝟙}_{\{g_{km}=1\}} K \left(\frac{v-\hat\eta_{k}^{0} -\hat\eta_{m}^{0}}{b^0} \right)\)
\(\hat p_{0} (v;\, \boldsymbol{\hat\eta^{0}})= \frac{1}{b^0|\mathcal{M}|} \displaystyle{\sum_{km \in\mathcal{M}}} {\Large 𝟙}_{\{g_{km}=0\}} K \left(\frac{v-\hat\eta_{k}^{0} -\hat\eta_{m}^{0}}{b^0} \right)\)
\(\hat p_{1} (v;\, \boldsymbol{\hat\eta^{1}}, \hat\beta^1)= \frac{1}{b^1|\mathcal{L}|} \displaystyle{\sum_{km \in \mathcal{L}}} {\Large 𝟙}_{\{g_{km}=1\}} K \left(\frac{v-\hat\eta_{k}^{1} - \hat\eta_{m}^{1} - \hat\beta^1\sum_{j\in\gamma(k,m)}\hat\eta_{j}^{1} }{b^1} \right)\)
\(\hat p_{0} (v;\, \boldsymbol{\hat\eta^{1}}, \hat\beta^1)= \frac{1}{b^1|\mathcal{L}|} \displaystyle{\sum_{km \in\mathcal{L}}} {\Large 𝟙}_{\{g_{km}=0\}} K \left(\frac{v-\hat\eta_{k}^{1} - \hat\eta_{m}^{1} - \hat\beta^1\sum_{j\in\gamma(k,m)}\hat\eta_{j}^{1} }{b^1} \right)\)

